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Abstract

Topic Modeling (TM) is a text data dimension reduction algorithm, akin to factor analysis

(FA) or principal component analysis (PCA), widely used for text data analysis (classification,

clustering, etc.). Modern TM algorithms such as Latent Dirichlet Allocation (LDA) are prob-

abilistic and complex, impeding their intuitive understanding. However, relating them to Non-

Negative Matrix Factorization (NMF), and PCA mitigates this impediment. Indeed, parallel

to being analogous to NMF, LDA also emerges from Principal Component Analysis (PCA),

both of which are intuitively easy to understand. Therefore, presenting LDA as emerging from

NMF and/or PCA provides an intuitive grounding of modern TM algorithms.

1 Introduction

Topic modeling methods are a class of latent variables methods (factor models) applied to text

data. Modern topic modeling algorithm originated from principal component analysis (PCA), one

of the oldest latent variables methods (Hotelling, 1933). Indeed, Latent Semantic Analysis (LSA),

one of the oldest topic modeling algorithm is literally PCA applied to text data (Landauer and

*Email: sbikienga@gmail.com (Please feel free to contact me with any suggestions, corrections or comments.)
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Dumais, 1997a). Modern topic modeling algorithms, such as Latent Dirichlet Allocation (LDA)

involves numerical approximation of probabilistic words count models, precluding an intuitive

understanding of these methods. However, an intuitive understanding of these methods can be

developed by demonstrating the rise of such models from traditional models such as PCA, and

Non Negative Matrix Factorization (NMF).

An attractive property of PCA is that it does not require a data generating process, making it

applicable to all sort of data regardless of how the data generating process. Thanks to this non-

parametric property, PCA (particularly the Singular Value (SVD) approach to PCA) was applied

to text data, and termed LSA (Landauer and Dumais, 1997a). Yet, the non-parametric property of

PCA is also a weakness for inferential studies, which requires probabilistic modeling. Moreover,

LSA factors can be difficult to interpret because the factors loadings can take any real value. Since

text data are count data, the factor loadings are easier to interpret if they are all non negative.

To address these two shortcomings of LSA, Probabilistic Latent Semantic Analysis (PLSA) was

proposed (Hofmann, 1999, 2001). PLSA can be seen as a probabilistic NMF algorithm (Paatero

and Tapper, 1994; Hubert et al., 2000).

PLSA is prone to over-fitting issues, common with maximum likelihood estimation (MLE) meth-

ods, particularly when the dimension is relatively large for the sample size. Thus, Latent Dirichlet

Allocation (LDA), a Bayesian approach to PLSA, was proposed to address the over-fitting issue

of PLSA (Blei et al., 2003). Bayesian approach differs from MLE approach on the assumption of

prior distribution of the parameters to be estimated.

Modern topic modeling algorithms are variant of LDA; and deviate from LDA by the distribu-

tional assumption of the parameters’ priors (Blei and Lafferty, 2007; Mimno and McCallum, 2012;

Roberts et al., 2016); or by the estimation methods (Variational Bayes and Markov Chain Monte

Carlo methods) (Blei et al., 2003; Griffiths and Steyvers, 2004; Taddy, 2012; Wang and Blei,

2013). The remaining of the paper is organized as follow: Section 2 presents NMF, an algorithm

that applies an alternating multivariate least square method; section 3 presents PCA, an orthogonal

matrix factorization algorithm; section 4 presents LSA, an application of PCA to text data; section

2



5 presents PLSA, a probabilistic treatment of LSA; section 6 presents LDA, a Bayesian treatment

of PLSA; and section 7 presents Correlated Topic Model (CTM), a variant of LDA that assumes

correlation between the topics.

2 Non Negative Matrix Factorization

Matrix factorization stems from the idea that any matrix can be decomposed into the product of

two or more matrices. It turns out that this decomposition can be used to reduce a high dimen-

sional data into a smaller dimension. There are several algorithms for matrix factorization; and the

technique has been used mostly for two purposes (Hubert et al., 2000): (1) for solving linear sys-

tems (examples include the LU and QR decompositions); (2) For statistical purposes. Among the

most popular algorithms used for statistical purposes are: Factor Analysis (FA), Principal Compo-

nent Analysis (PCA) and/or Latent Semantic Analysis (LSA), Non Negative Matrix Factorization

(NMF), Probabilistic Latent Semantic Analysis (pLSA), Latent Dirichlet Allocation (LDA), etc.

2.1 Matrix Factorization

Assume a matrix of data WD×V , representing V variables observed on D individuals. Matrix fac-

torization (MF) postulates that W can be decomposed (or approximated) as follows:

WD×V ' ZD×KBK×V , (2.1)

where K <<V is an arbitrary number. A simple example may be instructive.

Example 1. Consider the following example data in Table 1. Let WD×V be a document term

matrix, where D represents the number of documents, and V represents the number of unique

words. The Wd,v element of W represents the count of word v in document d. Consider a matrix W

of 6 documents and 5 words. Let the words be: college, education, family, health, and medicaid
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(Table 1). On purpose, rows 1, 3, and 6 have high values for college and education and rows 2, 4,

and 5 have high values for health and medicaid.

Table 1: Example matrix of words counts

college education family health medicaid

document.1 4 6 0 2 2
document.2 0 0 4 8 12
document.3 6 9 1 5 6
document.4 2 3 3 7 10
document.5 0 0 3 6 9
document.6 2 6 1 4 5

MF informs that W6,5 can be decomposed into the product of two matrices as follows:



4 6 0 2 2

0 0 4 8 12

6 9 1 5 6

2 3 3 7 10

0 0 3 6 9

4 6 1 4 5


︸ ︷︷ ︸

W6×5

'



2 0

0 4

3 1

1 3

0 3

2 1


︸ ︷︷ ︸

Z6×2

2 3 0 1 1

0 0 1 2 3


︸ ︷︷ ︸

B2×5

Note that the similarities between documents observed on the WD,V matrix are also observed on

the ZD,K matrix. In fact, ZD×K explains the variations between the D observations in the original

WD×V dataset. To see why that is the case, observe that Eq. (2.1) is similar to a multivariate

regression equation; and the underlying assumption of a regression equation is that the features

matrix X (represented here as Z) explains the variations observed in the multivariate response Y

(represented here as W ). Likewise, B is similar to the matrix of coefficients in a multivariate

regression model. Moreover, by taking the transpose of Eq. (2.1) and by considering the new rows

to be observations, it can be seen that the BT matrix explains the observed variations between the

V columns of W .
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Analyzing reduced dimensional data ZD×K (K <<V ) presents several advantages. It can alleviate

overfitting issues when V is too large compared to D; each row of B can embeds a latent concept

that can have practical meaning; for K small enough, graphical tools can be used to explore the

data. For example, Fig. 2.1 shows that observations 1, 3, and 6 are close to each other; and

observations 2, 4, 5 are close to each other. A careful observation of the W6,5 matrix reveals the

same proximity between the observations. However, these proximities are not easily detected with

5 variables.
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Figure 2.1: Scatterplot of the two dimensional Z variables

For exploratory data analysis, it is essential to know the meaning of the Z variables, since these

meanings are the foundation for telling stories from the data. The kth row of B is a list of the total

weight of each of the original variables. For our hypothetical example, looking at the third matrix,

the first row is dominated by the first two original variables, college and education, suggesting that

the first column of Z is an education index (latent concept) variable. Similarly, it is safe to infer

that the second column of Z is a health index.
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The matrix decomposition in the above example was manually constructed to illustrate the idea

of matrix factorization as applied to data analysis. The least squares method is a simple general

purpose algorithm for solving Eq. (2.1) for Z and B (Paatero and Tapper, 1994). In fact, observe

that Eq. (2.1) is a multivariate linear regression equation, without the error terms; except that Z is

not observed.

By defining:

WD×V = ZD×KBK×V + εD×V , (2.2)

the least squares solution for B in Eq. (2.2) is given by:

B̂ =
(
ZT Z

)−1
ZTW, (2.3)

where it is assumed that
(
ZT Z

)
is non-singular. If we were solving for Z, the least squares solution

is given by:

Ẑ =WBT (BBT )−1, (2.4)

where it is assumed that (BBT ) is non-singular. Note that Z, nor B are known. The trick is to

initialize Z and solve for B; then use the estimated B̂ to solve for a new Ẑ. Iterate this two step

process until convergence of an objective function. A sensible objective function is the euclidean

norm (often referred as the L2−norm or Frobenius norm) between W and its predicted values, Ŵ ,

defined as:

Ŵ = ẐB̂ (2.5)

and the objective function is:

Q(Z,B) = ||W −ZB||2

where || · ||2 is the L2−norm.
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The optimization problem becomes:

[Ẑ, B̂] = min
Z,B

Q(Z,B) (2.6)

An R code implementation of this algorithm is presented in Appendix A.1. It should be noted that

problem (2.6) does not have a unique solution. Consider any orthogonal matrix TK×K . If Ẑ and B̂

are solutions for problem (2.6), then by Eq. (2.5), we have Ŵ = ẐB̂ = [ẐT ][T T B̂] = Z̃B̃, and Z̃ and

B̃ are also solution of problem (2.6).

It may be informative to re-write the least square solution expression of B as:

B̂K×V =
[
ZT Z

]−1
ZTW

= PK×DWD×V

where P =
[
ZT Z

]−1 ZT and can be seen as a weight matrix. Then, the scalar elements B̂k,v of the

weight matrix B can be written as:

B̂k,v =
D

∑
d=1

Pk,dWd,v (2.7)

From Eq. (2.7), it can be seen that for a given row k of B (which is often referred as topic k in text

analytics), the relative weight of the word wv (noted B̂k,v) is the total weighted sum of the word wv

counts in all the documents W1,v,W2,v · · ·WD,v, with respective weights Pk,1,Pk,2, · · · ,Pk,D.

Likewise, the least square solution expressions of Z can be re-written as:

ẐD×K =WBT [BBT ]−1

=WD×V QV×K

where Q = BT [BBT ]−1 and can be seen as a weight matrix. Then, the scalar elements of the

reduced dimension data matrix Ẑd,k can be written as:

7



Ẑd,k =
V

∑
v=1

Qv,kWd,v (2.8)

From Eq. (2.8), it can be seen that for a given document d, the index value of topic k is a

weighted sum of all the words Wd,1,Wd,2, · · · ,Wd,V used in that documents, with respective weights

Q1,k,Q2,k, · · · ,QV,k.

Eq. (2.7) and (2.8) provide an intuitive understanding of topic modeling. Eq. (2.7) says that the

relative importance of the word v (Wv) for a given topic k is a weighted sum of the counts of that

word in all the documents; and Eq. (2.8) says that the relative importance of a topic in a document

is a weighted sum of the counts of all the words used in that document.

It should be noted that despite having non negative values in W , Z and B may have negative val-

ues. This poses some interpretational challenges. To see the issue, consider W to be a matrix of

words counts, and assume the kth row of B has negative coefficients for some words and positive

coefficients for some other words. How would we interpret the relationship between two words

with opposing signs? However, if the coefficients are non negative, they have an ordinal mean-

ing. Hence, Non Negative Matrix Factorization (NMF) algorithms were proposed to address this

concern (Paatero and Tapper, 1994; Hubert et al., 2000). Moreover, it is possible to normalize

the matrices of positive values into matrices of proportions further easing the interpretation of the

results.

This section has presented an intuitive and general idea of topic modeling, by applying NMF

algorithm to a hypothetical text data.

2.2 Non Negative Matrix Factorization

The algorithm presented above can be labeled as constraint-free matrix factorization algorithm.

There is a plethora of MF algorithms with varying constraints and/or assumptions.

• PCA (Hotelling, 1933) and FA (Thurstone, 1935) impose orthogonality constraint between

the Z·k vectors and between the Bk· vectors.
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• Trapezoid MF imposes Zi, j = 0 for j > i, Bi, j = 0 for j < i (LU factorization is an example).

• We can think of these methods as special cases of the generic algorithm presented in section

2.1.

Another form of constraint is to impose Zi, j ≥ 0, Bi, j ≥ 0 for all i, j. Imposing such constraint leads

to the notion of Positive Matrix Factorization (PMF), generally referred as Non Negative Matrix

Factorization; and originally termed Non-Negative Factor Model (Paatero and Tapper, 1994).

Let’s write the MF as:

WD×V ' Znm f Bnm f (2.9)

where the superscript nmf emphasizes non negativity of the elements of Z and B.

In practice, Znm f and Bnm f are estimated by alternating least squares where the negative values

Znm f
d,k and Bnm f

k,v are set to zero at each iteration (Paatero and Tapper, 1994). A simple R imple-

mentation of this algorithm is presented in appendix A.2. Berry et al. (2007) presents a survey of

different algorithms and applications of NMF. Eldén (2007, chap.9) presents a textbook treatment

of NMF.

The NMF can be normalized so that Z and B can be interpreted as probability distributions (Gillis,

2017). To do so, let DW and DB be two diagonal matrices, with diagonal elements the row sums of

W and B respectively (i.e. DWd,d = ∑
V
v=1Wd,v; DBk,k = ∑

V
v=1 Bk,v). Further assume W = ZB. Then,

we can write:

D−1
W W =

[
D−1

W ZDB
][

D−1
B B

]
⇐⇒ (2.10)

W ∗ = Z∗B∗

where W ∗ = D−1
W W , Z∗ = D−1

W ZDB, and B∗ = D−1
B B.
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It is easy to see that the row sums of B∗ are all 1s; since each B∗k,v =
Bk,v

∑
V
v=1 Bk,v

by definition,

∑
V
v=1 B∗k,v = ∑

V
v=1

Bk,v

∑
V
v=1 Bk,v

= 1
∑

V
v=1 Bk,v

∑
V
v=1 Bk,v = 1. Thus, 0≤ B∗k,v ≤ 1, and ∑

V
v=1 B∗k,v = 1.

To see why the row sums of Z∗ are all 1s, observe that for each row i of W ∗, ∑
V
v=1W ∗d,v = 1 by

definition. So, we have

1 =
V

∑
v=1

W ∗d,v

=
V

∑
v=1

[
K

∑
k=1

Z∗d,kB∗k,v

]

=
K

∑
k=1

[
Z∗d,k

V

∑
v=1

B∗k,v

]
(2.11)

=
K

∑
k=1

[
Z∗d,k ∗1

]
=

K

∑
k=1

Z∗d,k

Thus, 0 ≤ Zd,k ≤ 1, and ∑
K
k=1 Zd,k = 1. Therefore, each row d of Z∗ and each row k of B∗ is a

probability distribution (by the definition of discrete probability distribution).

Even though the elements of Z and B can be interpreted as probabilities, this interpretation is ad

hoc. A formal use of probability distribution for NMF in text analytics is presented in section 5.

3 Principal Component Analysis

A parallel application of matrix factorization algorithms in text mining consists of the application

of PCA to text data. PCA is one of the oldest dimension reduction algorithm (Hotelling, 1933). It

consists of re-expressing the observed data Xn×p into Zn×K with the goal of removing redundancy

(defined as correlation between variables) in the original data X , while preserving most of the vari-

ations in X . n, p, and K represents the number of observations, the number of variables in the

original dataset, and the number of the variables of the reduced dataset, respectively. Geometri-
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cally, PCA consists of orthogonally projecting the p dimensional data X into a K sub-dimensional

space.

Let P be an orthogonal projection matrix. We can define Z as follows:

Zn×p = Xn×pPp×p. (3.1)

Define:

CZ =
1

n−1
ZT Z

=
1

n−1
[
PT XT XP

]
(3.2)

= PT
[

1
n−1

XT X
]

P

= PTCX P,

where CZ and CX are the covariance matrices of Z and X , respectively.

Theorem. If A is symmetric, there is an orthogonal matrix E such that A = EDET , where D is a

diagonal matrix (Gentle, 2017, p.154).

Using this theorem, and setting P = E, we have:

CZ = PTCX P

= ET [EDET ]E (3.3)

= ET EDET E

= D.

Thus, the covariance matrix of Z is indeed a diagonal matrix, that is, the Z variables are not corre-

lated. Note that by orthogonality of E, ET E = EET = I.
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Definition. The total variance is the trace of the covariance matrix.

We observe from Eq. (3.3) that:

tr(CZ) = tr(D)

= tr(PTCX P)

= tr(ETCX E) (3.4)

= tr(EETCX)

= tr(CX).

From Eq. (3.3) and (3.4), it is confirmed that the covariance of Z is diagonal, and Z preserves the

total variance of the original dataset X .

PCA as a dimension reduction methods arises from observing that D is a rank ordered matrix, that

is, the diagonal elements of the D matrix are ordered in decreasing order. Consequently, the hope

is that there is a K << p, such that ∑
K
k=1 dk,k ' tr(CX); in which case,

Zn×K ' Xn×pEp×K (3.5)

approximates the original dataset Xn×p.

We can approximately retrieve Xn×p from Eq. (3.5):

Zn×KET
K×p ' Xn×pEp×KET

K×p

⇐⇒ (3.6)

Xn×p ' Zn×KET
K×p.

Eq. (3.6) shows that PCA is a matrix factorization algorithm. Unlike the matrix factorization

algorithms presented in Section 2, PCA is an orthogonal matrix factorization algorithm (by the
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above theorem), and does not impose non negativity of the factorized matrices.

The above theorem is known as eigen decomposition (or spectral decomposition). The Singular

Value Decomposition (SVD) algorithm is a more general solution to the PCA problem (Shlens,

2014). SVD generalizes the notion of eigenvectors from square matrices (such as the covariance

matrix) to any kind of matrix (Murphy, 2012, p.394).

By SVD, any real n× p matrix X can be decomposed as follows:

Xn×p =Un×nSn×pV T
p×p, (3.7)

where U and V are orthonormal matrices, that is UTU = UUT = In, V TV = VV T = Ip. S is a

diagonal matrix containing the r = min(n, p) singular values σk ≥ 0 on the main diagonal, with 0s

filling the rest of the matrix.

If Xn×p are zero means p variables, the covariance matrix:

CX =
1

n−1
XT X

=
1

n−1
V SUTUSV T (3.8)

=
1

n−1
V S2V T

=V DV T ,

where D = 1
N−1S2. Eq. (3.8) reveals that the cross product of the SVD of X yields the eigen-

decomposition of the covariance matrix of X . But, the eigen-decomposition of CX is the PCA

solution; hence, the equivalence of PCA and SVD.

Assuming n > p, Eq. (3.7) can be re-written as:

Xn×p =Un×pSp×pV T
p×p. (3.9)

Moreover, if there is a K such that σK+i ' 0, for i = 1,2, · · · ,P−K, we can approximate Xn×p, by
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X̂n×p, where:

X̂n×p =Un×KSK×KV T
K×p. (3.10)

Along the spirit of X ' ZB, let’s define Z =US, and B =V T . Then, we can write:

X̂ = ZB (3.11)

Again, PCA (whether it is solved by eigen-decomposition or SVD) is a matrix factorization al-

gorithm, meant to transformed a high dimensional data Xn×p into a lower dimensional data Zn×K

(where K ≤ p). The lower dimensional data preserves most of the total variations in Xn×p, and is

orthogonal.

Modern TM algorithm derives directly from PCA. The main goal of this section was to present

PCA, and show the similarity between PCA and MF, which is easier to grasp, intuitively.

4 Latent Semantic Analysis

Latent Semantic Analysis (LSA) is an application of SVD to a matrix of words counts (Landauer

and Dumais, 1997b). As such, LSA is exactly another application of PCA.

To fix ideas, consider the example dataset provided in example 1. Applying PCA (eigen-decomposition)

to the example dataset, it appears that the first three components captures all the variations in W6×5

(see standard deviation values in the output); Moreover, about 92.6% of the total variation in W is

explained by the first two components, suggesting that the five-dimensional data can be effectively

reduced into a two-dimensional data.

W = scale(W, center = TRUE, scale = FALSE) # to standardize the W variables

pca_W = princomp(W) # princomp() is one of the R software function for PCA

pca_W$sdev

## Comp.1 Comp.2 Comp.3 Comp.4 Comp.5
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## 5.28e+00 2.11e+00 5.88e-01 6.57e-09 0.00e+00

The term PC-scores is often used to refer to the Z values.

pca_scores = data.frame(pca_W$scores)

Table 2: PC scores or Z values

Comp.1 Comp.2 Comp.3 Comp.4 Comp.5

document.1 -6.580 2.580 0.637 0 0
document.2 7.350 -0.511 0.017 -0 -0
document.3 -5.370 -3.530 0.243 -0 0
document.4 3.110 -1.520 0.093 -0 -0
document.5 4.630 2.040 0.252 0 -0
document.6 -3.150 0.929 -1.240 0 0

The B matrix from WD×V ' ZD×KBK×V is known as the loadings matrix and is used to interpret the

meaning of the new Z variables. Table 2 shows the PC scores or the Z values. Observe that only

the first two columns have sizable scores. Since the first two components are deemed worthwhile

interpreting, the meaning of the two Z variables can be inferred from the first two rows of the

loadings. The first row of Table 3 suggests that the first component is a contrast between education

and health (the education variables have high negative scores while the health variables have high

positive scores). The second component does not have a clear interpretation since the education

and health related variables have all high scores. Another thing to note is that despite words counts

being positive, the PC scores and their loadings have negative and positive values. That poses

interpretational challenges; for example, referring to component 3 in Table 3, it is not clear what

meaning can be inferred from the opposite loadings of education and college.

pca_loadings = t(pca_W$loadings[,]) # extracting the factor loadings

Next, let’s check how the SVD solution compares to the regular PCA (eigen-decomposition) solu-

tion. Comparing Table 2 and Table 4 suggests that the PC scores are identical whether the solution

is obtained by eigen-decomposition or SVD.
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Table 3: PC loadings

college education family health medicaid

Comp.1 -0.350 -0.582 0.264 0.334 0.598
Comp.2 -0.449 -0.570 -0.115 -0.419 -0.534
Comp.3 0.822 -0.560 0.050 -0.087 -0.037
Comp.4 0 0.078 -0.105 -0.808 0.574
Comp.5 0 -0.131 -0.951 0.228 0.165

svd_W = svd(W) # Singular Value Decomposition applied to the data

U = svd_W$u

S = diag(svd_W$d)

Z_svd = svd_scores = U %*%S

Table 4: PC scores obtained by SVD

-6.580 2.580 0.637 -0 0
7.350 -0.511 0.017 -0 0
-5.370 -3.530 0.243 0 -0
3.110 -1.520 0.093 -0 -0
4.630 2.040 0.252 0 -0
-3.150 0.929 -1.240 -0 -0

Last, let’s perform a LSA on the same data. Looking at the ‘lsa()‘ output (‘lsa()‘ is the R function

to perform LSA), it can be noted that the output is identical to the svd output (multiplying the first

matrix–$tk–of the output below with the diagonal matrix of $sk vector yields the same score as the

pc-scores above).

This exercise has displayed the equivalence between PCA, SVD, and LSA methods. Thus, it is

clear that LSA, the oldest topic modeling algorithm is simply a PCA algorithm (SVD) applied to

text data.
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library(lsa) # Needed to access the lsa function

lsa_W = lsa(W)

lsa_W # print the output

## $tk

## [,1] [,2] [,3] [,4] [,5]

## document.1 -0.509 0.4999 0.4418 -0.3261 0.1869

## document.2 0.569 -0.0988 0.0120 -0.0647 0.6561

## document.3 -0.415 -0.6826 0.1686 0.3528 -0.0450

## document.4 0.241 -0.2934 0.0642 -0.7183 -0.5170

## document.5 0.358 0.3951 0.1747 0.4962 -0.5129

## document.6 -0.244 0.1797 -0.8612 -0.0520 -0.0464

##

## $dk

## [,1] [,2] [,3] [,4] [,5]

## college -0.350 -0.449 0.8218 0.0000 0.0000

## education -0.582 -0.570 -0.5597 0.0562 0.1418

## family 0.264 -0.115 0.0499 -0.2556 0.9216

## health 0.334 -0.419 -0.0868 -0.7616 -0.3542

## medicaid 0.598 -0.534 -0.0369 0.5929 -0.0711

##

## $sk

## [1] 1.29e+01 5.17e+00 1.44e+00 4.52e-16 1.34e-16

##

## attr(,"class")

## [1] "LSAspace"

# lsa_W$tk%*%diag(lsa_W$sk) # to check equality of pc-scores
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Fig. (4.1) illustrates the usefulness of dimension reduction methods. The example data has five

variables (words); it is not trivial to detect similarities or differences between the observations

(documents) by considering all five variables. However, by PCA, the five variables are collapsed

into two composite variables, which we can easily explore with a scatterplot (or biplot). Fig. (4.1)

shows that education related documents (documents 1, 3, and 6) are located to the left of the origin

of the first component, and the health related documents (documents 2, 4, and 5) are located to the

right of the first component. Thus we can surmise a similarity between documents 1, 3, and 6, and

a similarity between documents 2, 4, and 5.

biplot(pca_W, cex = 0.5, xlim = c(-0.8, 0.8))
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Figure 4.1: Biplot of the PCA results

PCA simply uses matrix algebra to compress information without regards to the characteristics of

the data. For instance, it does not take into consideration that the variables are positive or count

data. That may raise interpretational difficulties. Referring to Fig. 4.1, there is nothing to say about
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education variables being positioned to the left, and health variables being positioned to the right.

All the figure tells is that there is a contrast between these variables. To see why this shortcoming

is important, let’s consider the first dimension of Fig. 4.1; based on the first axis, we can only say

that, for example documents 5 and 6 are in opposite directions. There is no information related

to the relative importance of these documents with respect to the first latent variable. If we could

force the axis to start from zero, then the relative position of a document on the axis informs on

the relative importance of the document with respect to the particular latent variable that the first

axis represents; that is, the axis’ numbers have an ordinal interpretation. A solution to the lack of

ordinal interpretation of the coefficients is to use the Non Negative Matrix Factorization (NMF)

method presented in Section 2.2, or to use a probabilistic model.

5 Probabilistic Latent Semantic Analysis

To fully understand topic modeling, we have performed two tasks: (1) we have shown that LSA,

the oldest of topic modeling algorithms is identical to PCA; (2) these data dimension reduction

methods are all special cases of matrix factorization algorithms. In statistics, these methods are

known as latent variable high dimensional data reduction methods. However, they all suffer from

the lack of a probability model, since they do not require a distributional assumption of the data.

This shortcoming is not an issue for exploratory data analysis. Though they can reduce the dimen-

sion of the data well, they are not suited for inferential studies. Inferential studies require model

assumptions; by assuming a data generating process (probability model), inference statistics relies

on the parameters estimates of the model to generalize from a sample data to a population. Prob-

abilistic Latent Semantic Analysis (PLSA) was proposed to supplement the lack of distributional

assumption of LSA (Hofmann, 1999, 2001). In that sense, PLSA is a “statistical view of LSA”

(Hofmann, 1999, p.289).

19



5.1 PLSA: Model Specification

Table 5: Define terms
D Number of documents

di The ith document

V Number of unique words

wv The vth word

ndi,wv The number of words wv in document di

Z Topic identity or topic label

Assume p(wv|di) is the probability of observing the word wv in the document di.

We can write:

p(wv|di) = ∑
z∈Z

p(wv,z|di)

= ∑
z∈Z

p(wv|z,di)p(z|di) (5.1)

= ∑
z∈Z

p(wv|z)p(z|di)

Where z is a categorical hidden (or latent) variable taking values 1,2, · · · ,K. z indicates the topic

identity (or topic number). The second line of Eq. (5.1) derives from the conditional probability

rule, and the third line derives from the assumption that conditional on z, wv and di are independent.

A document is a collection of Ndi = ∑
V
v n(di,wv) words, assumed independent; thus, given a docu-

ment, the joint probability of observing the words w1,w2, · · · ,wV is:

p(w1,w2, · · · ,wV |di) =
V

∏
v=1

p(wv|di)
n(di,wv) (5.2)

Eq. (5.2) is a multinational distribution without the normalizing constant. It may be helpful here to

think of a V sided die of unequal probabilities (multinoully or categorical distribution). Observing

a single word is equivalent to rolling the die once. Observing the Ndi words of document di is
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equivalent to rolling the V sided die Ndi times, independently; and observing n(di,wv) occurences

of word v (wv) in document i (di).

Assuming independence of the documents, the joint probability (or the joint likelihood) of observ-

ing the corpus (collection of D documents) is:

p(W |D) =
D

∏
d=1

V

∏
v=1

p(wv|di)
n(di,wv) (5.3)

By the third line of Eq. (5.1), Eq. (5.3) becomes:

L(θ |W ) =
D

∏
d=1

V

∏
v=1

(
∑
z∈Z

p(z|di)p(wv|z)

)n(di,wv)

(5.4)

Taking the log of Eq. (5.4) gives:

L (θ |W ) =
D

∑
d=1

V

∑
v=1

n(di,wv)log

(
∑
z∈Z

p(wv|z)p(z|di)

)
(5.5)

The estimation goal is to find p(wv|z) and p(z|di) to maximize L (θ |W ). However, due to the sum

operator inside the log, there is no closed form solution for this problem. Thus, the traditional

maximum likelihood estimation (MLE) method does not apply here. An alternative is to use the

Expectation Maximization (EM) algorithm. It is a numerical method which aims at approximating

the log likelihood (5.5).

It can be shown (see Appendix (B)) that the approximation solution of (5.5) consists of alternatively

solving:

p(zk|di,wv) =
p(wv|zk)p(zk|di)

∑
K
l=1 p(wv|zl)p(zl|di)

(5.6)

in the E-step, and

p(wv|zk) =
∑

D
d=1 n(di,wv)p(zk|di,wv)

∑
V
v=1 ∑

D
d=1 n(di,wv)p(zk|di,wv)

(5.7)
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p(zk|di) =
∑

V
v=1 n(di,wv)p(zk|di,wv)

∑
K
k=1 ∑

V
v=1 n(di,wv)p(zk|di,wv)

(5.8)

in the M-step, until convergence of some objective function defined as,

Q(θ) =
D

∑
d=1

V

∑
v=1

n(wv,di)
K

∑
k=1

p(zk|wv,di)log(p(wv|zk)p(zk|di)) (5.9)

where θ is a short hand notation for the parameter to be estimated.

In practice, initial values are provided (or assumed) for p(wv|zk) and p(zk|di) to compute p(zk|wv,di)

in the E-step; then the computed p(zk|wv,di) is used to compute new values for p(wv|zk) and

p(zk|di) in the M-step. E-step, M-step are computed alternatively until convergence of Eq. (5.9).

5.2 Relation between LSA and PLSA

PLSA is a model based approach to LSA, and as such the two methods are fundamentally linked

(Hofmann, 1999). To see this link, let’s write the joint distribution between the word wv and the

document di as:

p(wv,di) = ∑
Z

p(z)p(wv|z)p(di|z)

=
K

∑
zk=1

p(di|zk)p(zk)p(wv|zk) (5.10)

Let’s define U = [p(di|zk)]D×K , V T = [p(wv|zk)]K×V , and S = [p(zk)]K×K . Then, it follows that:

[p(wv,di)]D×V =

[
K

∑
zk=1

p(di|zk)p(zk)p(wv|zk)

]
D×V

= [p(di|zk)]D×K [p(zk)]K×K [p(wv|zk)]K×V (5.11)

=USV T
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5.3 On the equivalence of PLSA and NMF

Eq. (2.10) reveals that the NMF can be re-expressed in probabilistic form, where the Z and B can

be interpreted as probability distributions. That probabilistic interpretation of NMF approach is ad

hoc, and is done mostly for interpretational purpose. PLSA is a model based approach with the

probabilistic interpretation of the parameters being inherent to the model definition. Gaussier and

Goutte (2005) formally show the equivalence between PLSA and NMF.

To show the equivalence between the two methods, define:

Zplsa = [p(di|zk)]D×K

and

Bplsa = [p(zk)p(wv|zk)]K×V

Then, the matrix W̃ of the joint distribution of wv, di of the D documents by V words can be written

as:

[p(wv,di)]D×V = [p(di|zk)]D×K [p(zk)p(wv|zk)]K×V

⇒

W̃ = ZplsaBplsa

Thus PLSA is a NMF.

Conversely, we can show that NMF is a PLSA. To do so, consider Eq. (2.9). Let’s re-scale W into

W̄ in such a way that ∑di,vW̄di,v = 1. Then W̄ can be seen as a matrix of joint distributions of wv

and di; Eq. (2.9) becomes:

W̄D×V = Znm f
D×KBnm f

K×V

Let’s further introduce DZ and DB, two K×K diagonal scaling matrices such that DZk×k =∑
D
i=1 Z̄di,k,

and DBk×k = ∑
V
v=1 B̄k,v. Then
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W̄D×V = Znm f
D×KD−1

Z DZDBD−1
B Bnm f

K×B

=
[
Znm f

D×KD−1
Z

]
[DZDB]

[
D−1

B Bnm f
K×B

]
= [p(di|zk)]D×K [p(zk)]K×K [p(wv|zk)]K×V

Thus, NMF is a PLSA.

Consequently NMF and PLSA are equivalent.

6 Latent Dirichlet Allocation

The idea of topic modeling is generally associated with PLSA and LDA, and their subsequent

variants. In terms of evolution of ideas, LDA is a Bayesian approach to PLSA, and was proposed

by Blei et al. (2003). From our model specification of PLSA in Section 5.1, let’s define:

p(zk|d) = θd,k

p(wv|zk) = φk,v

Where θd,k is the probability (or proportion) of observing topic k in document d; and φk,v is the

probability of observing the word wv given topic k.

For a given document d θd = [θd,1,θd,2, · · · ,θd,K] is a K vector, and for a given topic k, φk =

[φk,1,φk,2, · · · ,φk,V ] is a V vector, where K is the number of topics in each document, and V is

the number of unique words in the corpus (collection of D documents). For PLSA, the θs are

parameters to be estimated. LDA assumes the θs and φs to be random parameters with prior

Dirichlet distributions.

θd ∼ DirichletK(α)
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φk ∼ DirichletV (βk)

By assumption, the K vector α is the same for all documents; and each φk has its own V vector βk

parameters.

Under these assumptions, PLSA has two major shortcomings that LDA solves:

1. The number of parameters to estimate is linear in the number of documents in PLSA. To see

this, recall that p(wv|di)=∑
K
k=1 p(wv|zk)p(zk|di) or [p(wv|di)]D×V = [p(zk|di)]D×K [p(wv|zk)]K×V .

From this equation, we see that the number of parameters to estimate is D×K +K×V =

K(D+V ). However, the parameters to estimate for LDA are the K vector α and the K×V

matrix βK×V , that is LDA estimates K +K×V parameters α and β . Given that PLSA has

significantly more parameters to estimate than LDA, it is more susceptible to over-fitting

issues.

2. Contrary to PLSA, LDA is a fully Bayesian approach, which provides a straightforward way

to make inferences about documents not previously seen in the training data.

Despite the shortcomings observed with PLSA, Lu et al. (2011) shows that there is no clear answer

to which of the two methods perform better for regular text mining task. However, LDA seems to

be better at tasks based on the reduced dimensional representation of the text, θ , (provided that the

prior parameters α are optimally chosen).

Girolami and Kabán (2003) shows that by setting α = 1, PLSA is a special case of LDA.

Next, let’s provide a mathematical exposition of LDA and present the data generative process as-

sumed to estimate the posterior distributions of θ and φ . LDA is a model that represents documents

as being generated by a random mixture over latent variables called topics (Blei et al., 2003). A

topic is defined as a distribution over words. For a given corpus of D documents each of length Nd ,

the generative process for LDA is defined as follows:
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1. For each topic k, draw a vector distribution of words φk; where φk ∼ Dirichlet(βk) with

k = {1,2, ...K}

2. For each document d:

(a) Draw a vector of topic proportions θd , where θd ∼ Dirichlet(α)

(b) For each word i

i. Draw a topic assignment zd,n, where zd,n∼multinomial(θd) with zd,n ∈{1,2, ...,K}

ii. Draw a word wd,v, where wd,v ∼ multinomial(φk=zd,n) with wd,v ∈ {1,2, ...,V}

Note: Only the words w are observed.

This formal definition of LDA can be difficult to understand. An informal explanation can be

helpful:

Point 1 can be thought of having K boxes containing the same set of words with varying pro-

portions. for example, if the vector φ1 (i.e box 1) is about education, we would expect relatively

more words about education and fewer words referring to other concepts (i.e φ1,education,φ1,school ,

φ1,college, · · · are relatively high compared to, say φ1,crime, φ1,travel , φ1,bank). Likewise, if the vec-

tor φ2 (i.e box 2) is about economy, we would expect relatively more words about economy and

fewer words referring to other concepts (i.e φ2,economy,φ2,business, φ2,growth, · · · are relatively high

compared to, say φ2,sport , φ2,travel , φ2,police). And so on for φ3 (box 3), · · · , φK (box K).

Point 2 says that for a given a document d, to generate a word wd,n, we have to decide first which

box the word wd,n should be drawn from. Thus, we first draw a box ID zd,n = k. But, the likelihood

of zd,n being 1, or 2, or · · · or K is the likelihood of topic k in the document d, θd,k = p(zd,n = k|θ).

So, for a given document, a topic identity zd,n = k is drawn p(zd,n = k|θd), θd being the topics

proportions in document d, then given that the topic of interest is zd,n = k , we draw the words

wd,n = v from the box φk=zd,n (p(wd,n = v|φk=zd,n)).

The inferential goal is to find the parameters θ and φ with the highest likelihood to have generated

the observed words w. The above generative process allows us to construct an explicit closed
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form expression for the joint likelihood of the observed and hidden variables. Markov Chain

Monte Carlo (MCMC), and Variational Bayes methods can then be used to estimate the posterior

distribution of θ and φ (that is α,β |w) (Blei et al., 2003; Griffiths and Steyvers, 2004; Blei, 2012).

The following is the variational Bayes derivation of the posterior distribution of the θs and φs (see

Appendix C for an exposition of the theory of Variational Bayes).

A topic φk is a distribution over V unique words, each having a proportion φk,v; i.e φk,v is the

relative importance of the word v for the definition (or interpretation) of the topic k. It is assumed,

for simplicity, that:

φk ∼ DirichletV (β )

That is, the vectors β1,β2, · · · ,βK = β , so

p(φk|β ) =
1

B(β )

V

∏
v=1

φ
β−1
k,v

Where B(β ) = ∏
V
v=1 Γ(β )

Γ(∑V
v=1 β )

. Since we have K independent topics (by assumption),

p(φ |β ) =
K

∏
k=1

1
B(β )

V

∏
v=1

φ
β−1
k,v (6.1)

A document d is a distribution over K topics, each having a proportion θd,k, i.e. θd,k is the relative

importance of the topic k, in the document d. We assume:

θd ∼ DirichletK(α)

That is:

p(θd|α) =
1

B(α)

K

∏
k=1

θ
αk−1
d,k
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And since we have D independent documents (by assumption),

p(θ |α) =
D

∏
d=1

1
B(α)

K

∏
k=1

θ
α−1
d,k (6.2)

Let z be the latent topic assignment variable, i.e. the random variable zd,n assigns the nth word

wd,n, from document d, to the topic k. zd,n is a vector of zeros and 1 at the kth position (zd,n =

[0,0, ...1,0, ..]). Define zd,n,k = I(zd,n = k) where I is an indicator function that assigns 1 to the

random variable zd,n when zd,n is the topic k, and 0 otherwise.We assume:

zd,n ∼MultinomialK(1,θd)

That is:

p(zd,n,k|θd) = θd,k =
K

∏
k=1

θ
zd,n,k
d,k

A document d has Nd independent words, and since we assume D independent documents, we

have:

p(z|θ) =
D

∏
d=1

Nd

∏
n=1

K

∏
k=1

θ
zd,n,k
d,k

=
D

∏
d=1

K

∏
k=1

Nd

∏
n=1

θ
zd,n,k
d,k

=
D

∏
d=1

K

∏
k=1

V

∏
v=1

θ
nd,v×zd,v,k
d,k (6.3)

where zd,v,k = I(zd,n = k)I(wd,n = v); nd,v is the count of the word v in document d.

The word wd,n is drawn from the topic’s words distribution φk:

wd,n|φk=zd,n,k ∼Multinomial(1,φk=zd,n)
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p(wd,n = v|φk=zd,n) = φk,v

=
V

∏
v=1

K

∏
k=1

φ
wd,n,v×zd,n,k
k,v

wd,n is a vector of zeros and 1 at the vth position. Define wd,n,v = I(wd,n = v) where I is an indicator

function that assigns 1 to the random variable wd,n when wd,n is the word v, and 0 otherwise.

There are D independent documents, each having Nd independent words, so:

p(w|φ) =
D

∏
d=1

Nd

∏
n=1

V

∏
v=1

K

∏
k=1

φ
wd,n,v×zd,n,k
k,v (6.4)

=
D

∏
d=1

V

∏
v=1

K

∏
k=1

φ
nd,v×zd,v,k
k,v

The joint distribution of the observed words w and unobserved (or hidden variables) θ , z, and φ is

given by:

P(w,z,θ ,φ |α,β ) = p(θ |α)p(z|θ)p(w|φ ,z)p(φ |β )

The goal is to get the posterior distribution of the unobserved variables:

p(z,θ ,φ |w,α,β ) =
P(w,z,θ ,φ |α,β )∫ ∫

∑z P(w,z,θ ,φ |α,β )dθdφ

∫ ∫
∑z P(w,z,θ ,φ |α,β )dθdφ is intractable, so approximation methods are used to approximate the

posterior distribution. The seminal paper of LDA (Blei et al., 2003) uses the Mean Field Variational

Bayes to approximate the posteriors distribution. A Markov Chain Monte Carlo (MCMC) estima-

tion method for LDA was proposed by Griffiths and Steyvers (2004). The mean field variational
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inference assumes independence of the posterior distributions as follow:

p(z,θ ,φ |w,α,β )' q(z,θ ,φ |·) = q(z|·)q(θ |·)q(φ |·)

where the dot (·) is a place holder for the unknown posterior parameter.

From Bishop (2006, p.466), the posteriors distributions:

q∗(z|·) ∝ exp
{

Eθ ,φ [log(p(z|θ))+ log(p(w|φ ,z))]
}

(6.5)

q∗(θ |·) ∝ exp
{

Ez,φ [log(p(θ |α))+ log(p(z|θ))]
}

(6.6)

q∗(φ |·) ∝ exp
{

Eθ ,z [log(p(φ |β ))+ log(p(w|φ ,z))]
}

(6.7)

Using log on 6.5, and applying log to 6.3, and 6.4, we have:

log(q∗(z|·)) ∝ Eθ ,φ

[
D

∑
d=1

V

∑
v=1

K

∑
k=1

nd,v× zd,v,k
(
log(θd,k)+ log(φk,v)

)]

∝

D

∑
d=1

V

∑
v=1

K

∑
k=1

nd,v× zd,v,k
(
E(log(θd,k))+E(log(φk,v))

)
Note that

x|p∼MultinomialK(p) ⇐⇒ log(p(x|p)) =
K

∑
k=1

xklog(pk),

and let’s define log(pk) = E(log(θd,k)+E(log(φk,v)), so pk = exp(E(log(θd,k))+E(log(φk,v))).

Thus,

q∗(z|·) ∝

D

∏
d=1

V

∏
v=1

K

∏
k=1

[
exp(E(log(θd,k))+E(log(φk,v)))

]nd,v×zd,v,k
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That is,

zd,v|wd,θd,φk ∼MultinomialK(p), (6.8)

where p = [p1, p2 · · · , pK]; and by the Multinomial properties,

E(zd,v,k) = pk = exp(E(log(θd,k))+E(log(φk,v))) (6.9)

Using Eq. (6.6), and taking the log of Eq. (6.2), and Eq. (6.3),

q∗(θ |·) ∝ exp

{
Ez

[
∑
d

∑
k
(α−1)log(θd,k)+∑

d
∑
k

∑
v

nd,v× zd,v,klog(θd,k)

]}

=
D

∏
d

K

∏
k=1

exp

{
(α +

V

∑
v=1

nd,v×E(zd,v,k)−1)log(θd,k)

}

=
D

∏
d=1

K

∏
k=1

θ
α+∑

V
v=1 nd,v×E(zd,v,k)−1

d,k

Thus, the approximate posterior distribution of the topics distribution in a document d is:

θd|wd,α ∼ DirichletK(α̃d) (6.10)

where α̃d = α +∑
V
v=1 nd,v×E(zd,v,·). α̃d is a K vector, and the dot (·) in E(zd,v,·) stands for K

vector. The kth element of the K vector α̃d is α̃d,k = αk +∑
V
v=1 nd,v×E(zd,v,k).

By the properties of the Dirichlet distribution, the expected value of θd|α̃d is given by:

E(θd|α̃d) =
α +∑

V
v=1 nd,v×E(zd,v,.)

∑
K
k=1[α +∑

V
v=1 E(zd,v,k)]

(6.11)

The numerical estimation of E(θd|α̃d) gives the estimates of the topics proportions within each

document d, (θ̂d). It is worth noting that E(zd,v,k) can be interpreted as the responsibility that

topic k takes for explaining the observation of the word v in document d. Ignoring for a moment
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the denominator of Eq. (6.11), E(θd,k|α̃d,k) is similar to a regression equation where nd,v are the

observed counts of words in document d, and E(zd,v,k) are the parameter estimates (or weight) of

the words. That illustrates that the importance of a topic in a document is due to the high presence

of words (nd,v) referring to that topic, and the weight of these words (E(zd,v,k)).

Using Eq. (6.7), and taking the log of Eq. (6.1), and Eq. (6.4),

q∗(φ) ∝ exp

{
Ez

[
K

∑
k=1

V

∑
v=1

(β −1)log(φk,v)+
D

∑
d=1

K

∑
k=1

V

∑
v=1

nd,v× zd,v,klog(φk,v)

]}

=
K

∏
k=1

V

∏
v=1

exp

{
(β +

D

∑
d=1

nd,v×E(zd,v,k)−1)log(φk,v)

}

=
K

∏
k=1

V

∏
v=1

φ
β+∑

D
d=1 nd,v×E(zd,v,k)

k,v

Thus, the approximate posterior distribution of the words distribution in a topic φ̂k is:

φk|w,β ∼ DirichletV (β̃k) (6.12)

where β̃k = β +∑
D
d=1 nd,v×E(zd,·,k). β̃k is a V vector, and the dot (·) in E(zd,·,k) stands for V

vector. The vth element of the V vector β̃k is β̃v,k = βv +∑
D
d=1 nd,vE(zd,v,k).

And the expected value of φk|β̃k is given by:

E(φk|β̃k) =
β +∑

D
d=1 nd,v×E(zd,·,k)

∑
V
v=1(β +∑

D
d=1 nd,v×E(zd,v,k))

(6.13)

The numerical estimation of E(φk|β̃k) gives the estimates of the words relative importance for each

topic k, (φk). Ignoring the denominator in the Eq. (6.13), E(φk,v|β̃k,v) is the weighted sum of the

the frequencies of the word v in each of the documents (nd,v), the weights being the responsibility

topic k takes for explaining the observation of the word v in document d (E(zd,v,k)).

Here, we have derived the posteriors expected values of the θs and φs using the words counts nd,v,
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which is slightly different from Blei et al. (2003). Posterior formulas similar to the current derived

solution can be found in Murphy (2012, p.962).

In sum, the rows of φK,V =
[
E(φk|β̃k)

]
K×V

are useful for interpreting (or identifying) the themes,

which relative importance in each document are represented by the columns of θD,K = [E(θd|α̃d)]D×K .

Table 6: Comparing the parameter estimators of NMF, PLSA, and LDA

Document topics distribution Topic words distribution

NMF Ẑd,k = ∑
V
v=1Wd,vQv,k B̂k,v = ∑

D
d=1Wd,vPk,d

PLSA p(zk|di) =
∑

V
v=1 n(di,wv)p(zk|di,wv)

∑
K
k=1 ∑

V
v=1 n(di,wv)p(zk|di,wv)

p(wv|zk) =
∑

D
d=1 n(di,wv)p(zk|di,wv)

∑
V
v=1 ∑

D
d=1 n(di,wv)p(zk|di,wv)

LDA E(θd|α̃d) =
α+∑

V
v=1 nd,vE(zd,v,.)

∑
K
k=1[α+∑

V
v=1 E(zd,v,k)]

E(φk|β̃k) =
β+∑

D
d=1 nd,v∗E(zd,.,k)

∑
V
v=1(β+∑

D
d=1 nd,v∗E(zd,v,k))

Table 6 compares the parameters estimators of NMF, PLSA, and LDA. To clarify notations, note

that Wd,v = n(di,wv) = nd,v is the count of the word wv in document di. The difference between the

three methods are mostly due to the differences in words counts weighting scheme. The hyperpa-

rameters, present in the LDA estimators, are also sources of differences.

7 Correlated Topic Model

LDA is what we would call the OLS of topic modeling. Current development of topic modeling

generally consists of modifying the LDA assumptions. For example, Correlated Topic Modeling

(CTM) modifies the prior assumption of the documents topic distribution θ . While LDA assumes

that θ follows a Dirichlet prior distribution, CTM assumes that θ follows a normal (or Gaussian)

prior distribution. Though the assumption of normal distribution is more realistic than the as-
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sumption of Dirichlet distribution, the normal assumption renders the estimation of CTM more

challenging. Since z|θ is multinomial, assuming Dirichlet distribution prior for θ is convenient

because Dirichlet is a conjugate prior for the multinomial distribution. A drawback of the Dirichlet

prior is that it assumes independence between the topics. However, this independence assumption

is not realistic, since we expect topics within documents to be correlated. For instance it is likely

that a topic about health is correlated with the topic about food, and the topic about exercise. CTM

was proposed to allow correlation between topics within documents (Blei and Lafferty, 2007).

7.1 Model Specification

Figure 7.1: Path Diagram of the Correlated Topic Model

Σ0

µ0

θd zd,n wd,n βk

Nd

D

K

Figure 1 presents the path diagram of the correlated topic model. The diagram shows the condi-

tional links between the variables. The arrows show the directions of the conditional links. For

instance, θd is conditional on µ0, and Σ0; zd,n is conditioned on θd .

From the diagram, the joint distribution of θd , zd , wd , that is, the distribution of jointly observing

θd , zd , wd is:

p(θd,zd,wd|µ0,Σ0,β ) = p(θd|µ0,Σ0)p(zd|θd)p(wd|β ,zd)

Note: only the vector of words wd counts is observed. θd and zd are unobserved (or hidden)

variables. The goal is to infer the posterior distribution of θd and zd conditional on the observed

words wd
1.

1Here, we derive the posterior distribution for the parameters of a single document.
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p(θd,zd|wd,µ0,Σ0,β ) =
p(θd,zd,wd|µ0,Σ0,β )∫

∑z[p(θd,zd,wd|µ0,Σ0,β )]dθ
(7.1)

Because of the complexity of the denominator of Eq. (7.1), this posterior distribution is intractable.

Hence, the use of iterative methods to approximate the posterior distribution of θ , and z. Here, the

Variational Inference (VI) method is used. Before, we derive the variational approximation of the

posteriors, let’s spell out the distribution of the random variables θd , zd , and wd .

The distributional assumptions are:

θd|µ0,Σ0 ∼ Normal(µ0,Σ0),

i.e.

p(θd|µ0,Σ0) = |2πΣ0|−1/2exp{−1
2
(θd−µ0)

T
Σ
−1
0 (θd−µ0)}, (7.2)

θd is a K vector.

zd,n|θd ∼Multinomial(1,π(θd)),

where

π(θd) =
exp(θd)

∑
K
l exp(θd,l)

,

and
K

∑
k=1

π(θd,k) = 1.

So,

p(zd,n = k|θd) = π(θd,k),

and

p(zd,n|θd) =
K

∏
k=1

[
π(θd,k)

]zd,n,k ,

where zd,n is a K vector of zeros and 1 at the kth position (zd,n = [0,0, . . . ,0,1, . . . ]). K is the number
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of topics. n refers to the nth word. Since document d has Nd independent words,

p(zd|θd) =
Nd

∏
n=1

[
K

∏
k=1

(
π(θd,k)

)zd,n,k

]
(7.3)

wd,n|β ,zd,n ∼Multinomial(1,βk=zd,n),

i.e.

p(wd,n = v|βk=zd,n,k) = βk,v,

and

p(wd,n|β ,zd) =
K

∏
k=1

[
V

∏
v=1

β
wd,n,v
k,v

]zd,n,k

,

where wd,n is a V vector of zeros and 1 at the vth position (wd,n = [0,0, . . . ,0,1, . . . ]). V is the

number of unique words. Since document d has Nd independent words,

p(wd|β ,zd) =
Nd

∏
n=1

{
K

∏
k=1

[
V

∏
v=1

β
wd,n,v
k,v

]zd,n,k
}
. (7.4)

Recall that the joint distribution of wd , zd and θd is given by:

p(θd,zd,wd|µ0,Σ0,β ) = p(θd|µ0,Σ0)p(zd|θd)p(wd|β ,zd),

and can be written explicitly by taking the product of Eq. (7.2), Eq. (7.3), and Eq. (7.4).

7.2 Variational Bayes

Eq. (7.1) reveals that solving for the posterior distribution of the latent variables is intractable

due to the difficulty of computing the marginal distribution of the observed data wd . MCMC and

Variational Bayes (VB) methods can be used to approximate the posterior. VB is a faster algorithm,

especially when the model becomes complex. Blei and Lafferty (2007) and Wang and Blei (2013)
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apply VB to approximate the posterior distributions of θ and z.

By Bishop (2006, p.462), the variational approximation of the posterior distributions can be written

as:

q∗(θd|·) ∝ exp
{

Eq(zd) [log(p(zd|θd)p(θd|µ0,Σ0))]
}
.

q∗(zd|·) ∝ exp
{

Eq(θ) [log(p(zd|θd)p(wd|β ,zd))]
}
.

The dot in |· is a place holder for posterior parameters. VB relies on the hope that exp{·} (where

· is the expression inside the exponential) will take the form of a known distribution; and the

distribution q∗(·) is inferred to be that known distribution. The following development will make

this idea clearer.

Deriving q∗(θd|·)

q∗(θd|·) ∝ exp
{

Eq(zd) [log(p(zd|θd)p(θd|µ0,Σ0))]
}

= exp
{

Eq(zd) [log(p(zd|θd))]+ log(p(θd|µ0,Σ0))
}

(7.5)

log(p(zd|θd)) =
Nd

∑
n=1

K

∑
k=1

zd,n,klog
(
π(θd,k)

)
=

Nd

∑
n=1

K

∑
k=1

zd,n,k

[
θd,k− log

(
K

∑
l=1

exp
{

θd,k
})]

(7.6)

log(p(θd|µ0,Σ0)) ∝−1
2
(θd−µ0)

T
Σ
−1(θd−µ0) (7.7)

Thus, Eq. (7.6) and Eq. (7.7) into Eq. (7.5) gives:
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q∗(θd|·)∝ exp

{
Eq(zd)

[
Nd

∑
n=1

K

∑
k=1

zd,n,k

[
θd,k− log

(
K

∑
l=1

exp
{

θd,k
})]]

− 1
2
(θd−µ0)

T
Σ
−1(θd−µ0)

}

Let f (θd) be the expression inside the exponential, that is,

f (θd) =
Nd

∑
n=1

K

∑
k=1

Eq(zd)(zd,n,k)

[
θd,k− log

(
K

∑
l=1

exp
{

θd,l
})]

− 1
2
(θd−µ0)

T
Σ
−1
0 (θd−µ0)

=

[
θd− log(

K

∑
l=1

exp{θd,l})

]T

Eq(zd)

(
Nd

∑
n=1

zd,n.

)
− 1

2
(θd−µ0)

T
Σ
−1
0 (θd−µ0) (7.8)

=

[
θd− log

(
K

∑
l=1

exp
{

θd,l
})]T

Eq(zd) (t(zd))−
1
2
(θd−µ0)

T
Σ
−1
0 (θd−µ0),

where t(zd) = ∑
Nd
n=1 zd,n,·, and the dot (·) in zd,n,· stands for K-vector.

Since exp{ f (θd)} does not have the form of a distribution we can readily identify, we will approx-

imate it by the normal distribution, using the Laplace approximation method.

The Laplace approximation uses the 2nd order Taylor series expansion of f (θd).

By the 2nd order Taylor expansion,

f (θd)≈ f (θ̂d)+5 f (θ̂d)
T (θd− θ̂d)+

1
2
(θd− θ̂d)

T [52 f (θ̂d)](θd− θ̂d),

where

θ̂d = argmax
θd

f (θd)

5 f (θ̂d) is the gradient of f , and [52 f (θ̂d)] is the hessian of f , both evaluated at θ̂d .

Note that from the first order condition (FOC),5 f (θ̂d) = 0; therefore,

f (θd)≈ f (θ̂d)−
1
2
(
θd− θ̂d

)T [−52 f (θ̂d)
](

θd− θ̂d
)
. (7.9)
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exp{ f (θd)} can thus be approximated as:

exp{ f (θd)} ∝ C× exp
{
−1

2
(
θd− θ̂d

)T [−52 f (θ̂d)
](

θd− θ̂d
)}

,

where C = exp
{

f (θ̂d)
}

. So,

q∗(θd|·) ∝ exp{ f (θd)}=C× exp
{
−1

2
(
θd− θ̂d

)T [−52 f (θ̂d)
](

θd− θ̂d
)}

.

And we can readily identify the kernel of the multivariate normal density with mean θ̂d and vari-

ance Σ = [−52 f (θ̂d)]
−1

It can be shown (see Appendix D) that:

5 f (θd) = Eq(zd) [t(zd)]−π(θd)
K

∑
k=1

[
Eq(zd) (t(zd))

]
k−Σ

−1
0 (θd−µ0) ,

and

52 f (θd) =
[
−diag(π(θd))+π(θd)π(θd)

T ] K

∑
k=1

[
Eq(zd) (t(zd))

]
−Σ

−1
0 .

To summarize, the variational approximation of the posterior distribution of θd is:

q∗(θd|µ,Σ) = Normal
(

µ = θ̂d,Σ =
[
−52 f (θ̂d)

]−1
)
,

where

θ̂d = argmax
θd

f (θd) (7.10)

There is not a closed form solution for Eq. (7.10); we can use numerical optimization method,

such as gradient conjugate method, to approximate θ̂d .

Deriving q∗(zd|·)

Again,
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p(zd|θd) =
Nd

∏
n=1

K

∏
k=1

π(θd,k)
zd,n,k = exp

{
Nd

∑
n=1

K

∑
k=1

zd,n,klog(π(θd,k))

}

= exp

{
Nd

∑
n=1

K

∑
k=1

zd,n,klog

(
exp(θd,k)

∑
K
l=1 exp(θd,l)

)}

= exp

{
Nd

∑
n=1

K

∑
k=1

zd,n,k

[
θd,k− log(

K

∑
l=1

exp(θd,l)

]}

= exp

{
K

∑
k=1

Nd

∑
n=1

zd,n,k

[
θd,k− log(

K

∑
l=1

exp(θd,l)

]}

= exp

{
K

∑
k=1

t(zd)k

[
θd,k− log

(
K

∑
l=1

exp(θd,l)

)]}

= exp


[

θd− log

(
K

∑
l=1

exp(θd,l)

)]T

t(zd)

 .

So,

log(p(zd|θd)) =

[
θd− log

(
K

∑
l=1

exp(θd,l)

)]T

t(zd)

= η(θd)
T t(zd),

where η(θd) =
[
θd− log

(
∑

K
l=1 exp(θd,l)

)]
.

Thus,

Eq(θ) {log(p(zd|θd))}=
[
Eq(θ) {η(θd)}

]T t(zd) (7.11)

p(wd|β ,zd) =
Nd

∏
n=1

{
K

∏
k=1

(
V

∏
v=1

β
wd,n,v
k,v

)zd,n,k
}

= exp

{
Nd

∑
n=1

K

∑
k=1

zd,n,k

V

∑
v=1

wd,n,vlog(βk,v)

}
.
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Note that for each n, wd,n is a V×1 vector of zeros and 1 at the vth position. So ∑
V
v=1 wd,n,vlog(βk,v)=

log(βk,v). Thus,

p(wd|β ,zd) = exp

{
K

∑
k=1

[
Nd

∑
n=1

zd,n,klog(βk,v)

]}

= exp

{
K

∑
k=1

[
t(zd)klog(βk,v)

]}

= exp
{

t(zd)
T log(β·,v)

}
= exp

{
log(β·,v)T t(zd)

}
= exp

{
t(wd)

T t(zd)
}
.

where t(zd) = ∑
Nd
n=1 zd,n,·, and t(wd) = log(β.,v) is a K×1 vector.

So,

log(p(wd|β ,zd)) = t(wd)
T t(zd) (7.12)

And

q∗(zd|·) ∝ exp
{[

Eq(θ) (η(θd))+ t(wd)
]T t(zd)

}

Eq(θ) (η(θd)) = Eq(θ)

[
θd− log

(
K

∑
l=1

exp(θd,l)

)]

= µd− log

(
K

∑
l=1

exp(µd,l)

)

(Note: µd = θ̂d)
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By Wang and Blei (2013), (Eq. 17),

q∗(zd|φd)∼MultinomialK(φd) (7.13)

where φd is a K×V matrix with columns

φd,·,v = exp

{
µd− log

(
K

∑
l=1

exp(µd,l)

)
+ log(β·,v)

}

To see why this is the case, observe that if X ∼ Multinomial(p), then p(X |p) ∝ ∏
K
k=1 pXi

i =

exp
{

∑
K
k=1 Xilog(pi)

}
= exp

{
log(p)T X

}
.

Thus, the elements of the φd matrix are:

φd,k,v = exp

{
µd,k− log

(
K

∑
l=1

exp(µd,l)

)
+ log

(
βk,v
)}

= exp

{
µd,k− log

(
K

∑
l=1

exp(µd,l)

)}
βk,v

To summarize, for a given word wd,n = v,

q∗(zd,v,·) = MultinomialK(φd,·,v),

where φd,·,v = exp
{

µd− log
(
∑

K
l=1 exp(µd,l)

)}
�β·,v (� indicates element wise vector multiplica-

tion).

Put differently, φd,k,v = exp
{

µd,k− log
(
∑

K
l=1 exp(µd,l)

)}
×β·,v

t(zd) =
Nd

∑
n=1

zd,n,·

is a K×1 vector, and
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Eq(zd)(t(zd)) = Eq(zd)

(
Nd

∑
n=1

zd,n,·

)
,

= φdnT
d

by the Multinomial properties (if X ∼Multinomial(p), then E(Xi) = npi, n being the total number

of observations).

We have presented topic modeling in evolutionary perspective, by linking LDA to NMF and PCA,

which are easier to grasp, intuitively. Current topic modeling algorithms deviate from LDA by

modifying the LDA assumptions. For example, CTM replaces the Dirichlet assumption of LDA

with a logit normal distribution.
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A Matrix Factorization Algorithm

A.1 Unconstrained Matrix Factorization

The following R code implements the matrix factorization algorithm on the example data provided.

W <- matrix(c(4, 6, 0, 2, 2,

0, 0, 4, 8, 12,

6, 9, 1, 5, 6,

2, 3, 3, 7, 10,

0, 0, 3, 6, 9,

2, 6, 1, 4, 5), byrow = TRUE, nrow = 6)

W <- data.frame(W)

names(W) = c("college", "education", "family", "health", "medicaid")

row.names(W) = paste0("document.", 1:6)

W = as.matrix(W)

set.seed(3)

Z_init <- abs(round(rnorm(n = 6*2, mean = 0, sd = 2),0))

Z_init <- matrix(Z_init, nrow = 6)

Z <- Z_init

dist_ww <- 1e3

max_iter <- 1000

iter <- 0

while(iter <= max_iter && dist_ww >= 1e-6) {

iter <- iter + 1

ZZ_inv <- solve(t(Z)%*%Z)

B <- ZZ_inv%*%t(Z)%*%W
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BB_inv <- solve(B%*%t(B))

Z <- W%*%t(B)%*%BB_inv

W_hat <- Z%*%B

dist_ww <- sqrt(sum(W-W_hat)^2)

}

Z <- data.frame(round(Z, 2))

names(Z) <- c("Topic.1", "Topic.2")

B <- data.frame(round(B, 2), row.names = c("Topic.1", "Topic.2"))

Below is the table of the least squares estimate of B:

B

## college education family health medicaid

## Topic.1 1.18 1.96 -0.02 0.6 0.58

## Topic.2 0.50 0.85 1.11 2.5 3.60

Observe that row 1 of B has high values in columns 1 and 2 compared to columns 3, 4, and 5; and

row 2 has higher values for columns 4 and 5 compared to columns 1, 2, and 3. It is reasonable to

infer that Topic.1 (or component 1) is about education, and Topic.2 is about health.

Below is the table of the least squares estimate of Z:

Z

## Topic.1 Topic.2

## document.1 3.13 0.05

## document.2 -1.55 3.58

## document.3 4.31 0.97
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## document.4 0.41 2.71

## document.5 -1.16 2.68

## document.6 2.26 1.03

Observe that Topic.1 (or the scores of component 1) has big absolute values in documents 1, 3, and

6. Likewise, Topic.2 has big values in documents 2, 4, and 5. Hence, we can infer that documents

1, 4, and 6 are mostly about education; and documents 2, 4, and 5 are mostly about health.

We can use a scatterplot to explore the original five dimensional W data in a two dimensional Z

data as follow:

plot(x = Z$Topic.1, y = Z$Topic.2, cex = 3, xlab = "Topic.1", ylab = "Topic.2",

ylim = c(-0.25, 3.75), xlim = c(-1.75, 4.5))

text(x = Z$Topic.1, y = Z$Topic.2, labels= 1:6, cex= 1)

●

●

●

●●

●

−2 −1 0 1 2 3 4

0
1

2
3

Topic.1

To
pi

c.
2

1

2

3

45

6

Figure A.1: Scatterplot of the two dimensional Z variables obtained from MF
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Fig. 2.1 is similar to Fig. A.1 even though the Zs appear different. In fact, there is not a unique

solution. Each solution is a local minimum, and is dependent on the initial value chosen. This non

uniqueness of the solution poses some challenges for inferential analysis, just like Factor Analysis.

For completeness, observe that Z×B approximates W well.

as.matrix(Z)%*%as.matrix(B)

## college education family health medicaid

## document.1 3.7184 6.1773 -0.0071 2.00 2.00

## document.2 -0.0390 0.0050 4.0048 8.02 11.99

## document.3 5.5708 9.2721 0.9905 5.01 5.99

## document.4 1.8388 3.1071 2.9999 7.02 9.99

## document.5 -0.0288 0.0044 2.9980 6.00 8.98

## document.6 3.1818 5.3051 1.0981 3.93 5.02

A.2 Non Negative Matrix Factorization Algorithm

The above R code can be modified to impose the non negative constraint, as shown below:

W <- matrix(c(4, 6, 0, 2, 2,

0, 0, 4, 8, 12,

6, 9, 1, 5, 6,

2, 3, 3, 7, 10,

0, 0, 3, 6, 9,

2, 6, 1, 4, 5), byrow = TRUE, nrow = 6)

W <- data.frame(W)

names(W) = c("college", "education", "family", "health", "medicaid")

row.names(W) = paste0("document.", 1:6)
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W = as.matrix(W)

set.seed(3)

Z_init <- abs(round(rnorm(n = 6*2, mean = 0, sd = 2),0))

Z_init <- matrix(Z_init, nrow = 6)

Z <- Z_init

dist_ww <- 1e3

max_iter <- 1000

iter <- 0

while(iter <= max_iter && dist_ww >= 1e-6) {

iter <- iter + 1

ZZ_inv <- solve(t(Z)%*%Z)

B <- ZZ_inv%*%t(Z)%*%W

B[B<0] <- 0 # impose non negative constraint

BB_inv <- solve(B%*%t(B))

Z <- W%*%t(B)%*%BB_inv

Z[Z<0] <- 0 # impose non negative constraint

W_hat <- Z%*%B

dist_ww <- sqrt(sum(W-W_hat)^2)

}

Z <- data.frame(round(Z, 2))

names(Z) <- c("Topic.1", "Topic.2")

B <- data.frame(round(B, 2), row.names = c("Topic.1", "Topic.2"))

Z

## Topic.1 Topic.2
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## document.1 1.60 0.00

## document.2 0.00 5.83

## document.3 2.40 1.45

## document.4 0.79 4.37

## document.5 0.00 4.38

## document.6 1.37 1.60

B

## college education family health medicaid

## Topic.1 2.33 3.85 0.00 1.26 1.25

## Topic.2 0.00 0.01 0.69 1.37 2.06

as.matrix(Z)%*%as.matrix(B)

## college education family health medicaid

## document.1 3.73 6.1600 0.00 2.02 2.00

## document.2 0.00 0.0583 4.02 7.99 12.01

## document.3 5.59 9.2545 1.00 5.01 5.99

## document.4 1.84 3.0852 3.02 6.98 9.99

## document.5 0.00 0.0438 3.02 6.00 9.02

## document.6 3.19 5.2905 1.10 3.92 5.01

We observe that the matrices Z and B have non negative elements, as desired. The Z variables are

plotted in Fig. A.2. The figure is very similar to Fig. A.1.

plot(x = Z$Topic.1, y = Z$Topic.2, cex = 3, xlab = "Topic.1", ylab = "Topic.2",

ylim = c(-0.25, 6.5), xlim = c(-0.25, 2.75))

text(x = Z$Topic.1, y = Z$Topic.2, labels= 1:6, cex= 1)
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Figure A.2: Scatterplot of the two dimensional Z variables obtained from NMF

B Deriving the EM algorithm for PLSA

The Jensen Inequality states that if f is concave, then

E( f (x))≤ f (E(x)) (B.1)

Also, ∑z∈Z p(wv|z)p(z|di) can be re-written as an expectation over some arbitrary random variable

with probability distribution q(z), as follows:
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∑
z∈Z

p(wv|z)p(z|di) = ∑
z∈Z

q(z)p(wv|z)p(z|di)
1

q(z)

= Eq(z)

(
p(wv|z)p(z|di)

q(z)

)
.

Thus,

log

(
∑
z∈Z

p(wv|z)p(z|di)

)
= log

[
Eq(z)

(
p(wv|z)p(z|di)

q(z)

)]
.

By Jensen inequality (B.1), and by the fact that the log function is concave, we can write:

log
[

Eq(z)

(
p(wv|z)p(z|di)

q(z)

)]
≥ Eq(z)

[
log
(

p(wv|z)p(z|di)

q(z)

)]
= Eq(z) [log(p(wv|z)p(z|di))− log(q(z))]

= Eq(z) [log[p(wv|z)p(z|di)]]−Eq(z) [log(q(z))] (B.2)

≥ Eq(z) [log(p(wv|z)p(z|di))] .

By Eq. (5.5) and Eq. (B.2),

L (θ |W )≥
D

∑
d=1

V

∑
v=1

n(di,wv)Eq(z) [log(p(wv|z)p(z|di))]

=
D

∑
d=1

V

∑
v=1

n(di,wv) ∑
z∈Z

q(z)log(p(wv|z)p(z|di)) . (B.3)

Define q(zk) = p(zk|wv,di); then inequality (B.3) becomes:

L (θ |W )≥
D

∑
d=1

V

∑
v=1

n(wv,di)
K

∑
k=1

p(zk|wv,di)log(p(wv|zk)p(zk|di)) (B.4)

Call the Right Hand Side (RHS) of inequality (B.4) Q(θ). Q(θ) is a lower bound for L (θ |W ).
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The θ that maximizes Q(θ) maximizes L (θ |W ) (Bishop, 2006, Chap.9). Also,

p(zk|di) and p(wv|zk) must satisfy the sum to 1 condition; i.e.

K

∑
k=1

p(zk|di) = 1, (B.5)

and
V

∑
v=1

p(wv|zk) = 1 (B.6)

The EM goal is to find p(zk|di) and p(wv|zk) to maximize Q(θ) subject to ∑
K
k=1 p(zk|di) = 1, and

∑
V
v=1 p(wv|zk) = 1.

We can now set the Lagrange optimization equation as:

L =
D

∑
d=1

V

∑
v=1

n(di,wv)
K

∑
k=1

p(zk|wv,di)log(p(wv|zk)p(zk|di))

+
K

∑
k=1

λk

(
1−

V

∑
v=1

p(wv|zk)

)
+

D

∑
d=1

τd

(
1−

K

∑
k=1

p(zk|di)

)
.

By the first order condition (FOC)

∂L

∂ p(wv|zk)
= 0⇔

D

∑
d=1

n(di,wv)p(zk|di,wv) = λk p(wv|zk). (B.7)

Likewise,

∂L

∂ p(zk|di)
= 0⇔

V

∑
v=1

n(di,wv)p(zk|di,wv) = τd p(zk|di). (B.8)

By constraint (B.5) and FOC (B.7),

V

∑
v=1

D

∑
d=1

n(wv,di)p(zk|di,wv) = λk. (B.9)
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Likewise, by constraint (B.6) and FOC (B.8)

K

∑
k=1

V

∑
v=1

n(wv,di)p(zk|di,wv) = τd. (B.10)

Substituting Eq. (B.9) into (B.7) yields:

D

∑
d=1

n(di,wv)p(zk|di,wv) = p(wv|zk)
V

∑
v=1

D

∑
d=1

n(wv,di)p(zk|di,wv)

⇐⇒

p(wv|zk) =
∑

D
d=1 n(di,wv)p(zk|di,wv)

∑
V
v=1 ∑

D
d=1 n(di,wv)p(zk|di,wv)

.

Likewise, substituting Eq. (B.10) into Eq. (B.8) yields:

V

∑
v=1

n(di,wv)p(zk|di,wv) = p(zk|di)
K

∑
k=1

V

∑
v=1

n(di,wv)p(zk|di,wv)

⇐⇒

p(zk|di) =
∑

V
v=1 n(di,wv)p(zk|di,wv)

∑
K
k=1 ∑

V
v=1 n(di,wv)p(zk|di,wv)

.

By Bayes rule,

p(zk|di,wv) =
p(wv|zk)p(zk|di)

∑
K
l=1 p(wv|zl)p(zl|di)

.

To summarize, the EM algorithm for the PLSA consists of providing initial values for p(wv|zk)

and p(zk|di), then computing p(zk|di,wv) in the E-Step as follows:

p(zk|di,wv) =
p(wv|zk)p(zk|di)

∑
K
l=1 p(wv|zl)p(zl|di)

Once, p(zk|wv,di) are computed, new values for p(wv|zk) and p(zk|di) are computed in the M-Step
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using:

p(wv|zk) =
∑

D
d=1 n(di,wv)p(zk|di,wv)

∑
V
v=1 ∑

D
d=1 n(wv,di)p(zk|di,wv)

p(zk|di) =
∑

V
v=1 n(di,wv)p(zk|di,wv)

∑
K
k=1 ∑

V
v=1 n(di,wv)p(zk|di,wv)

To relate the PLSA estimates to the NMF estimate, the [p(wv|zk)]K×V matrix is equivalent to the B

matrix in NMF, and the [p(zk|di)]D×K matrix is equivalent to its Z.

C The Variational Bayes Method

Variational Bayes (VB) or Variational Inference is an analytical approximation to the posterior

distribution, generally used in Bayesian estimation for complex models. The method stems from

calculus of variations, which concerns itlself of functional. Functional are functions that take

functions as inputs. Optimizing a functional consists of exploring all possible input functions to

find the one that optimizes the functional.

Variational methods lend themselves to finding approximate solutions, by restricting the range of

input functions over which the optimization is performed. In the case of probabilistic inference, the

restriction may take the form of factorization assumptions (i.e independence between the functions

considered).

Motivation for Variational Bayes

1. The dimensionality of the latent space (model parameters and latent variables) is too high to

work directly with.

2. The posterior distribution has a highly complex form for which expectations are not analyti-

cally tractable.
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3. Sampling schemes may be computational prohibitive due to the complexity of the model.

The Theory of Variational Bayes

The general problem of VB consists of finding the posterior distribution p(Z|X), where Z ={
z1,z2, · · · ,zm

}
represents the model’s parameters and the latent variables; X = x1,x2, · · · ,xN rep-

resents the observed variables. Note that

p(Z,X) = p(Z)p(X |Z) (C.1)

is the joint distribution of Z and X . The conditional density can be written as:

P(Z|X) =
p(X ,Z)
p(X)

, (C.2)

where

p(X) =

∫
p(X ,Z)dZ. (C.3)

For many models the integral in Eq. (C.3) “is unavailable in closed form or requires exponential

time to compute” (Blei et al., 2017, p.5). However, it is easy to show2 that

ln(p(X)) = L (q)+KL(q||p), (C.4)

where

L (q) =

∫
q(Z) ln

{
p(X ,Z)

q(Z)

}
, (C.5)

2To show Eq. (C.4), replace p(X ,Z) in Eq. (C.5) with p(Z|X)p(X) to obtain:

L (q) =

∫
q(Z) ln

{
p(Z|X) p(X)

q(Z)

}
= ln(p(X))+

∫
q(Z) ln

{
p(Z|X)

q(Z)

}
= ln(p(X))−KL(q||p)
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and

KL(q||p) =−

∫
q(Z) ln

{
p(Z|X)

q{Z}

}
(C.6)

By definition KL(q||p) > 0 and KL(q||p) = 0 when p(Z|X) = q(Z), in which case ln(p(X)) =

L (q), by Eq. (C.4). L (q) is the lower bound of the evidence log likelihood, ln(p(X)). We

can chose q(Z) to maximize L (q), which is equivalent to choosing q(Z) to minimize KL(q||p);

which occurs when q(Z) = p(Z|X). But, we are assuming a situation where p(Z|X) is intractable.

Consequently, we “consider instead a restricted family of distributions q(Z) and then seek the

member of this family for which the KL divergence is minimized” (Bishop, 2006, p. 464). A

popular restricted family of distributions consists of assuming that the q distribution factorizes as:

q(Z) =
M

∏
i=1

qi(Zi). (C.7)

This approximation method is known as the mean field theory (Bishop, 2006, p.465).

The goal is now to find the q(Z) that maximizes the lower bound L (q). The goal is achieved by

optimizing L (q) with respect to each of the qi(Zi), holding q j(Z j), for i 6= j.

For simplicity, let’s write qi = qi(Zi), q j = q j(Z j); thus, Eq. (C.5) becomes:

L (q) =

∫
∏

i
qi

{
ln(p(X ,Z))−∑

i
ln(qi)

}
dZ

=

∫
q j

{∫
ln(p(X ,Z))qidZi

}
dZ j−

∫
q jln

(
q jdZ j

)
+ constant

=

∫
q jln

(
p̃
(
X ,Z j

))
dZ j−

∫
q jln

(
q j
)

dZ j + constant, (C.8)

where

ln
(

p̃
(
X ,Z j

))
= Ei6= j {ln(p(X ,Z))}+ constant, (C.9)

where Ei 6= j {·} denotes an expectation with respect to the q distributions over all variables Zi for
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i 6= j.

Note that Eq. (C.8) can be re-written as:

L (q) =

∫
q jln

{
p̃
(
X ,Z j

)
q j

}
dZ j =−KL(q j||p̃).

Thus, choosing q j to maximize L (q) is equivalent to choosing q j to minimize KL(q j||p̃). But

KL(q j||p̃)≥ 0 and is minimize when KL(q j||p̃) = 0, i.e. when

q j = p̃
(
X ,Z j

)
(C.10)

Thus, by Eq. (C.9) and Eq. (C.10), the general expression for the optimal solution is

ln
(
q∗j
(
Z j
))

= Ei6= j {ln(p(X ,Z))}+ constant, (C.11)

or

q∗j
(
Z j
)

∝ exp
{

Ei6= j {ln(p(X ,Z))}
}
. (C.12)

The additive constant in Eq. (C.11) is set such that q∗j(Z j) is normalized to be a probability:

q∗j(Z j) =
exp
{

Ei 6= j {ln(p(X ,Z))}
}∫

exp
{

Ei6= j {ln(p(X ,Z))}
}

dZ j

In practice, it is often convenient to work with the form of Eq. (C.11) and find the normalizing

constant by inspecting the form of exp
{

Ei 6= j {ln(p(X ,Z))}
}

(Bishop, 2006, p.466).

D Deriving the first and second derivatives of f (θd)

We have

π(θd) =
exp{θd}

∑
K
l=1 exp{θd,l}
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and define

η(θd) = log(π(θd)) = θd− log(
K

∑
l=1

exp{θd,l})

or

π(θd) = exp{η(θd)}

Define

A = η(θd)
T t̂(zd)

where t̂(zd) = Eq(zd)(t(zd))

We need to use the property of vector-by-vector derivatives, which says that the derivative of a

vector function y =



y1

y2

...

yK


with respect to an input vector x =



x1

x2

...

xp


is given by:

∂y
∂x

=



∂y1
∂x1

∂y1
∂x1

· · · ∂y1
∂x1

∂y1
∂x1

∂y1
∂x1

· · · ∂y1
∂x1

...
... . . . ...

∂y1
∂x1

∂y1
∂x1

· · · ∂y1
∂x1


(D.1)

Using Eq. (D.1), it is easy to show that

5A =

[
t̂(zd)−π(θd)

K

∑
k=1

t̂(zd)k

]

∂
[1

2(θd−µ0)
T Σ
−1
0 (θd−µ0)

]
∂θd

= Σ
−1
0 (θd−µ0)

So,

5 f (θd) = Eq(zd) [t(zd)]−π(θd)
K

∑
k=1

[
Eq(zd)(t(zd))

]
k−Σ

−1
0 (θd−µ0)

We derive5 f (θd) with respect to θd to get the hessian matrix.
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Again,

π(θd) = exp{η(θd)}=
exp{θd}

∑
K
l=1 exp{θd,l}

∂π(θd,i)

∂θd,i
=

exp{θd,i}∑
K
l=1 exp{θd,l}− exp{θd,i}exp{θd,i}

[∑K
l=1 exp{θd,l]2

= π(θd,i)−π(θd,i)π(θd,i)

= π(θd,i)[1−π(θd,i)]

∂π(θd,i)

∂θd, j
=−

exp{θd,i}exp{θd, j}
[∑K

l=1 exp{θd,l]2

=−π(θd,i)π(θd, j)

So,
∂π(θd,i)

∂θd, j
= π(θd,i)[1[i= j]−π(θd, j]

And, in matrix format,
∂π(θd)

∂θd
=−diag(π(θd))+π(θd)π(θd)

T

Therefore,

52 f (θd) =
[
−diag(π(θd))+π(θd)π(θd)

T ] K

∑
k=1

[
Eq(zd)(t(zd))

]
k−Σ

−1
0
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