Introduction In this post, I will scrape the 2018 State of the State Addresses (SoSAs), convert the speeches into a dataframe of words counts with the rows representing the speeches and the columns representing the words. This type of dataframe is known as document term matrix (dtm). I will also perform some exploratory analysis of the constructed dataset.
Every year, at the beginning of the year, most U.S governors present their visions for their states in their SoSAs.

Introduction Whenever I give a talk on topic modeling to people not familiar with the subject, the usual question I receive is: “can you provide some intuition behind topic modeling?” Another variant of the same question is: “This is magic. How can the computer identify the topics in the documents?”. No! It is not magic. It is Math. I presented the math behind Latent Dirichlet Allocation, and an example apllication in previous posts.

Introduction My work involves the use and the development of topic modeling algorithms. A surprising challenge I have had is communicating the output of topic modeling algorithms to people not familiar with text analytics. Here is my 10 cents explanation of the LDA output to my econ friends.
The use of text data for economic analysis is gaining attractions. One popular analytical tool is Latent Dirichlet Allocation (LDA), also called topic modeling (Blei, Ng, and Jordan 2003).

© 2017 Salfo Bikienga · Powered by the Academic theme for Hugo.